
GEQO SAIO report

June 26, 2015

1 SAIO vs GEQO comparison - report

1.1 Introduction

This is an aggregated report on comparison of two alternative join order optimizers:

• GEQO - Genetic Query Optimizer (current default optimizer in Postgres)

• SAIO - Simulated Annealing based Join Order optimizer (PGXN extension for Postgres)

The tests compare query costs, optimizing time and memory used.

1.2 Methodology

GEQO and SAIO are tested on many different schemas and queries. To ensure proper representation of each
join order optimizer abilities, each query has been tested on a range of parameters:

• GEQO has been tested with GEQO effort in range 0 to 10

• SAIO has been tested with different combinations of:

– equilibrium factor (determines the number of equilibrium loops)

– temperature reduction (temperature is multiplied by this fraction in each iteration until the system
freezes)

Some parameters of SAIO were fixed to reduce testing time:

• initial temperature (affects initial randomness of the algorithm and the total number of iterations)

• steps before freeze

FROM COLLAPSE LIMIT and JOIN COLLAPSE LIMIT have been set to 200.

1.3 Testing data

The testing data (DB schemas and queries) has been divided into following sections:

1.3.1 Provided data

SQL scripts that were written by hand. Mostly for the previous iteration of SAIO.

1.3.2 Programatically generated data

SQL scripts automatically generated by Python scripts
Schemas:

• 20-150 tables without constraints

• 20-150 tables with constraints

1



Flat queries:

• 15-20 JOINS (JOINS, LEFT JOINS, RIGHT JOINS, mixed)

• 20 JOINS (. . . )

• 30 JOINS

• 50 JOINS

• 70 JOINS

• 100 JOINS

• 130 JOINS

Nested queries:

• 15-20 JOINS (LEFT, RIGHT, mix)

• 20-25 JOINS

• 30-35 JOINS

• 50-60 JOINS

• 70-80 JOINS

1.3.3 Industrial examples

This would be awesome to include such examples. No examples yet.
The biggest query that I found during the search was on StackOverflow:

http://stackoverflow.com/questions/15769643/postgresql-query-optimization-with-many-left-joins?rq=1,
which had 13 joins.

2 Test summary

3 Conclusions

This report presents the behaviour of SAIO and GEQO for a number of queries. It doesn’t show superiority
of SAIO however it indicates that SAIO is worth further development and can possibly replace GEQO for
more complicated queries.

There is number of cases where SAIO outperforms GEQO in terms of estimated total query cost. Un-
fortunately SAIO often produces worse results in terms of total cost, used memory and optimizing time.

3.1 Cases where GEQO clearly wins:

In these cases GEQO constantly creates plans with lower cost, needs less time and memory.

• Queries with cartesian joins such as:

SELECT * FROM tab_1, tab_2 ... tab_N

WHERE (tab_1.col_1 = tab_2.col_1) AND (..) AND (tab_1.col_1 = tab_N.col_1);

• Queries with many JOINS and LEFT JOINS such as:

SELECT * FROM tab_1

[LEFT]JOIN tab_2 on tab_1.col_1 = tab_2.col_2

...

[LEFT]JOIN tab_N on tab_N.col_X = tab_Y.col_Z;

2



3.2 Cases where SAIO wins

Here we can observe that SAIO constantly finds solutions with lower cost.

• Queries with many RIGHT JOINS such as:

SELECT * FROM tab_1

RIGHT JOIN tab_2 on tab_1.col_1 = tab_2.col_2

...

RIGHT JOIN tab_N on tab_N.col_X = tab_Y.col_Z;

• Nested queries:

SELECT * FROM tab_1

[LEFT/RIGHT/] JOIN (

SELECT * FROM tab_2

[LEFT/RIGHT/] JOIN tab_3.col_A = tab_2.col_B

...

[LEFT/RIGHT/] JOIN tab_W.col_X = tab_Y.col_Z

) AS subquery_1 ON TRUE

...

[LEFT/RIGHT/] JOIN (

) AS subquery_N ON TRUE;

This benchmark should be treated with a grain of salt as it doesn’t cover all the possible cases (it can
be improved with some suggestions). For a production system, join order optimizer should be chosen after
checking it’s performance on a few expected query types.

4 Test details

In this section one can find more detailed information about the testing process - schemas and queries used.
Also graphs that highlight performance of each of the algorithms.

4.1 Provided queries

These queries were provided to test the previous iteration of SAIO back in 2010.

4.1.1 MODERATELY COMPLEX QUERY

Here we can see that SAIO is is finding solutions comparable to GEQO. The optimizing time may be
comparable to GEQO depending on the parameters of the algorithms. SAIO requires more memory than
GEQO.

What’s interesting - looking at ‘query cost vs tree depth’ plot, we can see that while SAIO explores a big
number of different trees, GEQO is stuck near just one solution.

In [3]: display_info_for_test_case(’complex_query’)

3



4



4.1.2 COMPLEX QUERY

This query is based on a schema with multiple constraints.

There are 5 views created on this schema. These views contain over 360 JOINS of different kind. The
final query selects data from these views joining them with tables from the schema using 13 JOINS.

Here SAIO clearly outperforms GEQO finding join order with lower cost in shorter time.

In [4]: import sys

sys.setrecursionlimit(2000) # for finding depth of a very deep python dict

display_info_for_test_case(’moderate_query’)

5



4.2 Programatically generated queries

4.2.1 star query - cartesians

These queries look like this:

SELECT * FROM tab_1, tab_2 ... tab_N

WHERE (tab_1.col_1 = tab_2.col_1) AND (..) AND (tab_1.col_1 = tab_N.col_1);

30 arms The best solutions here were found by SAIO, however average solution found by GEQO was
much better than average SAIO solution. SAIO also needed more time and more memory to optimize the
table order for this query.

In [16]: display_info_for_test_case(’star_query_30_arms’)

6



7



50 arms The same holds for this query.

In [17]: display_info_for_test_case(’star_query_50_arms’)

8



80 arms The result is the same as for the previous queries. GEQO finds better average solution than
SAIO in shorter time using much less memory.

In [13]: display_info_for_test_case(’star_query_80_arms’)

9



10



4.2.2 star query - joins

These queries look like:

SELECT * FROM center JOIN arm0 ON (arm0.col = center.col0 or arm0.col = center.col0)

JOIN arm1 ON (arm1.col = center.col1 or arm1.col = center.col2)

...

JOIN armN ON (armN.col = center.colN or armM.col = center.colN);

30 arms Still the same conclusions as for previous cartesian queries. GEQO wins.

In [18]: display_info_for_test_case(’star_query_join_30_arms’)

11



50 arms

In [19]: display_info_for_test_case(’star_query_join_50_arms’)

12



4.2.3 flat queries

SELECT * FROM table_0

JOIN/LEFT JOIN/RIGHT JOIN table_random ON table_random.col_random = table_random2.col_random2

...

JOIN/LEFT JOIN/RIGHT JOIN table_random ON table_random.col_random = table_random2.col_random2;

15 JOINS (JOINS, LEFT JOINS, RIGHT JOINS) For queries with 15 JOINS we can see that the
results generated by the libraries are pretty much comparable. GEQO has a bit worse average and median
solution but it is more predictable than SAIO.

13



For queries with 15 LEFT JOINS SAIO finds worse solutions but needs less time and memory than
GEQO.

For queries with 15 RIGHT JOINS we can see that GEQO returns some strangely high estimations. It
looks like bushy trees produced by SAIO are more suitable to model queries with many RIGHT JOINs.

For a mixed query with 5 JOINS, 5 LEFT JOINS and 5 RIGHT JOINS SAIO wins again. This is
probably due to presence of RIGHT JOINs in the query. GEQO doesn’t seem to handle them well.

In [28]: display_info_for_test_case(’random_query_15_joins_no_constraints’)

display_info_for_test_case(’random_query_15_left_joins_no_constraints’)

display_info_for_test_case(’random_query_15_right_joins_no_constraints’)

display_info_for_test_case(’random_query_5_joins_5_left_5_right’)

14



15



16



17



18



20 JOINS For these queries the observations from the previous smaller queries hold. SAIO seems com-
parable to GEQO for queries with regular JOINS, worse for queries with LEFT JOINS and much better
(correct!) for queries with RIGHT JOINS and mixed queries.

In [21]: display_info_for_test_case(’random_query_20_joins_no_constraints’)

display_info_for_test_case(’random_query_20_left_joins_no_constraints’)

display_info_for_test_case(’random_query_20_right_joins_no_constraints’)

display_info_for_test_case(’random_query_10_joins_5_left_5_right’)

19



20



21



22



23



30 JOINS The observations from previous cases of flat queries hold.

In [22]: display_info_for_test_case(’random_query_30_joins_no_constraints’)

display_info_for_test_case(’random_query_30_left_joins_no_constraints’)

display_info_for_test_case(’random_query_30_right_joins_no_constraints’)

display_info_for_test_case(’random_query_10_joins_10_left_10_right’)

24



25



26



27



28



29



50 JOINS For the next part of flat queries, this time with 50 JOINS, we can see that GEQO produces
better results for queries with JOINS and LEFT JOINS.

SAIO wins at RIGHT JOIN cases and mixed queries.
This is interesting that for the query with 50 LEFT JOINS GEQO actually produces a shorter tree than

SAIO solutions.

In [23]: display_info_for_test_case(’random_query_50_joins_no_constraints’)

display_info_for_test_case(’random_query_50_left_joins_no_constraints’)

display_info_for_test_case(’random_query_50_right_joins_no_constraints’)

display_info_for_test_case(’random_query_20_joins_15_left_15_right’)

30



31



32



33



34



35



70 JOINS Observations from the previous case hold.

In [24]: display_info_for_test_case(’random_query_70_joins_no_constraints’)

display_info_for_test_case(’random_query_70_left_joins_no_constraints’)

display_info_for_test_case(’random_query_70_right_joins_no_constraints’)

display_info_for_test_case(’random_query_30_joins_20_left_20_right’)

36



37



38



39



40



100 JOINS These queries would probably not complete during our lifetime, however the observations
from the previous cases hold.

GEQO wins for JOINS and LEFT JOINS, SAIO wins for queries that contain RIGHT JOINS.

In [52]: display_info_for_test_case(’random_query_100_joins_no_constraints’)

display_info_for_test_case(’random_query_100_left_joins_no_constraints’)

display_info_for_test_case(’random_query_100_right_joins_no_constraints’)

display_info_for_test_case(’random_query_40_joins_30_left_30_right’)

41



42



43



44



45



130 joins Previous observations hold.

In [16]: display_info_for_test_case(’random_query_130_joins_no_constraints’)

display_info_for_test_case(’random_query_130_left_joins_no_constraints’)

display_info_for_test_case(’random_query_130_right_joins_no_constraints’)

display_info_for_test_case(’random_query_50_joins_40_left_40_right’)

46



99

47



99

48



99

99

49



4.2.4 nested queries

Example:

SELECT * FROM table_0 JOIN table_12 ON table_0.col_0 = table_12.col_3

JOIN table_11 ON table_12.col_1 = table_11.col_0

JOIN table_5 ON table_0.col_1 = table_5.col_1

JOIN table_13 ON table_0.col_0 = table_13.col_1

JOIN table_7 ON table_12.col_3 = table_7.col_1

JOIN table_8 ON table_11.col_0 = table_8.col_0

JOIN table_19 ON table_12.col_3 = table_19.col_1

JOIN table_3 ON table_12.col_1 = table_3.col_1

JOIN table_1 ON table_0.col_3 = table_1.col_2

JOIN table_17 ON table_5.col_1 = table_17.col_0

JOIN (

SELECT * FROM table_0 JOIN table_5 ON table_0.col_1 = table_5.col_0

) AS subquery_table_0_299

ON TRUE

JOIN table_15 ON table_12.col_0 = table_15.col_2

JOIN table_6 ON table_12.col_3 = table_6.col_0

JOIN table_16 ON table_0.col_0 = table_16.col_0;

15-20 JOINS For nested queries with 15-20 JOINS we can observe similar situation as for flat queries
with such parameters.

SAIO wins for queries that use JOINS or contain RIGHT JOINS. GEQO wins at optimizing queries with
LEFT JOINS.

In [8]: display_info_for_test_case(’random_nested_query_15_joins’)

display_info_for_test_case(’random_nested_query_15_left_joins’)

display_info_for_test_case(’random_nested_query_15_right_joins’)

display_info_for_test_case(’random_nested_query_5_joins_5_left_5_right’)

50



51



52



53



54



55



20-25 JOINS SAIO and GEQO are comparable for queries with 20-25 JOINS. GEQO wins at LEFT
JOINS. SAIO wins at RIGHT JOINS.

In [5]: display_info_for_test_case(’random_nested_query_20_joins’)

display_info_for_test_case(’random_nested_query_20_left_joins’)

display_info_for_test_case(’random_nested_query_20_right_joins’)

56



57



58



59



30-35 JOINS Here SAIO finds better results for queries with 30-35 JOINS, RIGHT JOINS and mixed.
Solutions for queries with LEFT JOINS are comparable between GEQO and SAIO.

In [12]: display_info_for_test_case(’random_nested_query_30_joins’)

display_info_for_test_case(’random_nested_query_30_left_joins’)

display_info_for_test_case(’random_nested_query_30_right_joins’)

display_info_for_test_case(’random_nested_query_10_joins_10_left_10_right’)

60



61



62



63



64



50-60 joins Looking at the costs, these queries would take almost forever to complete. But still it is visible
that GEQO wins for queries that contain LEFT JOINS while SAIO wins at regular JOINS, RIGHT JOINS
and mixed queries.

In [24]: display_info_for_test_case(’random_nested_query_50_joins’)

display_info_for_test_case(’random_nested_query_50_left_joins’)

display_info_for_test_case(’random_nested_query_50_right_joins’)

display_info_for_test_case(’random_nested_query_20_joins_15_left_15_right_to_atri2’)

65



66



67



68



69



70



Two level nested query For this query that has subqueries within subqueries and 4 joins, 3 left joins,
15 right joins in total, it is visible that SAIO easily beats GEQO finding a query with lower cost and using
less memory. For the correct set of SAIO parameters, the computing time of SAIO may be also shorter than
that of GEQO.

In [31]: display_info_for_test_case(’double_nested_query’)

71



4.3 Sample query trees

To illustrate solutions created by GEQO and SAIO, a few smaller query trees are included

72



4.3.1 Query trees for cartesians

For queries with cartesian joins we can observe that both GEQO and SAIO produce trees of very similar
topology.

GEQO

73



SAIO

74



4.3.2 Query trees for joins

For queries with joins the trees produced by GEQO and SAIO have similar topology.
GEQO

SAIO

75



4.3.3 Query trees for left joins

For queries with left joins the trees produced by GEQO and SAIO have similar topology.
GEQO

76



SAIO

77



4.3.4 Query trees for right joins

For queries with right joins we can observe that the trees produced by GEQO and SAIO look much different.
The GEQO tree is left-deep and SAIO tree is bushy.

GEQO

SAIO

78



4.3.5 Query trees for nested queries

Here we can observe that trees produced by GEQO and SAIO have different topologies again. This is because
we have some right joins here.

GEQO

79



SAIO

80



4.3.6 Query trees for double nested query

Here both trees look pretty bushy.
GEQO

81



SAIO

82


	SAIO vs GEQO comparison - report
	Introduction
	Methodology
	Testing data
	Provided data
	Programatically generated data
	Industrial examples


	Test summary
	Conclusions
	Cases where GEQO clearly wins:
	Cases where SAIO wins

	Test details
	Provided queries
	MODERATELY COMPLEX QUERY
	COMPLEX QUERY

	Programatically generated queries
	star query - cartesians
	star query - joins
	flat queries
	nested queries

	Sample query trees
	Query trees for cartesians
	Query trees for joins
	Query trees for left joins
	Query trees for right joins
	Query trees for nested queries
	Query trees for double nested query



